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ABSTRACT

The structure of constitutive equations for nonlinear multiaxial behavior of

transversely isotropic fiber reinforced metal matrix composites subjected to proportional

loading has been investigated. Results from an experimental program have been

combined with numerical simulations of the composite behavior for complex stress states

to reveal the full structure of the equations. It was found that the nonlinear response can

be described by a quadratic flow-potential, based on the polynomial stress invariants,

together with a hardening rule that is dominated by two different hardening mechanisms.

INTRODUCTION

Useful constitutive equations are given by the simplest expression that can model an

observed behavior with a desired accuracy. Various aspects are stressed in different

applications. In the initial conceptual design stage convenience is more important than

precise prediction and simple expressions are used for scoping calculations, tlowever,

more accurate descriptions are required in the later stages of the design to optimize and

verify the performance of the structures. The latter type will be addressed here. Metal

matrix composites (MMC's) reinforced with continuous ceramic fibers are strong and stiff,

with only a weak nonlinearity in the response after matrix yield, when loaded in the fiber

direction. In transverse tension and inplane shear the matrix carries a substantial part of

the loading and the composite response is highly nonlinear when the matrix exhibits a

nonlinear response. This strong anisotropic behavior imposes special requirements on the

structure of the constitutive equations.

Hill's anisotropic yield surface has been used by fitting the free constants to a limited

set of tests [Griffin et al, 1981] and [Bahei-EI-Did et al, 1989]. The form of the yield

surface is far too restrictive and the calculated responses are only valid for a very limited

range of the stress space. Other constitutive equations are based on micro-mechanical

models with simple assumptions of the local stress state in the composite; cf.

[Aboudi,1982], [Min, 19811, and [Dovark and Bahei-E1-Din, 1982]. Despite the simplifying



[Aboudi,1982],[Min, 1981],and[Dovark and Bahei-E1-Din,1982].Despite the simplifying
assumptionsthe resulting constitutive equations are quite lengthy and are unable to
describe all essential features of the mechanical behavior with a sufficient accuracy.
Detailed micro-mechanical models that include all the features of the composite
behavior, cf. [Jansson,1991],require numerical models that are of the samecomplexity
as the structural problem. This implies that they are unsuitable for the analysis of
structural problems becauseof the massivecomputational power required.

A continuum description of the compositebehavior is a more powerful approach for
the analysisof structural problems.Spencer[1988]formulated quite general constitutive
equationsfor the casewhen the plastic deformation is inextensiblein the fiber direction.
Hashin et al [1974]assumedthat the responsein the fiber direction is elasticand that the
transverseresponseis non-linear. Lou and Shapery[1971]assumedthat the longitudinal
strain in the matrix is governedby the fiber deformation, wheareasRobinson and Duffy
[1990]assumedthat the plastic deformation of the compositeconservesvolume. The in-
plane responseof a MMC has also been fitted to a quadratic flow-potential and an
associatedhardening law by Kenagatet al [1987].Sunand Chen [1989]later noticed that
this fit had too high of a longitudinal yield stressand effectively gave a linear elastic
responsein the longitudinal direction.

Manyof the previouscontinuumformulationsareextensionsof constitutive equations
developed for metalsand assumptionsappropriate for metalshave beenincluded in the
formulation of the constitutive equationsfor the composites.Theseassumptionsare far
too restrictive for MMC's. In this paper the responseof a detailed numerical model of
a MMC will be used to provide guidance for the formulation of the constitutive
equations.The model complementsthe experimentsby providing responsesfor multiaxial
stressstatesthat would be difficult to achieveexperimentally. It also has the advantage
that the stressstatescan be selectedso that the structure of the constitutive equations
can be identified in a rational way.

OBSERVED MECHANICAL BEHAVIOR

The material usedin this studyis Du Pont'sFP/AL [Campionet al., 1978].It consists
of continuousalumina fiber with a fiber diameter of approximately20Mn in uniaxial lay-
up. The fiber volume fraction is 55% and the composite featuresa ductile AI-Li matrix
with a strong fiber matrix bond. Mechanical properties have been reported by Jansson
[1991].

The longitudinal tensile curve,Fig. la, hasan initial linear responseup to a stressof
approximately 250 MPa, thereafter the matrix yields after which the slope of the curve
showsa small decrease.The contraction in the transversedirection, Fig. lb, is alsolinear
up to matrix yield, when a small increaseis observed.
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The transversetensile curve,Fig. 2a,hasa linear responseup to a stressof 75 MPa.
The subsequentnonlinearity ismuchmore pronouncedthan for the longitudinal loading.

The ductility of 1% is low compared to the matrix ductility of 30%. The low ductility was

attributed [Jansson, 1991] to high hydrostatic stresses that build up in the matrix during

the plastic deformation and reduces the ductility of the matrix. The contraction in the

other transverse direction, Fig. 2b, increases after matrix yield and tends to a slope of - 1.

The contraction in the fiber direction, Fig. 2c, decreases after matrix yield and tends to

a very low rate.

Shear response for different shear loading are shown in Fig. 3. lnplane shear is given

by the curves for o_ = 0 ° in Fig. 3, transverse shear is given by c_ = q0 ° , and loading with

equal components of inplane and transverse shear are given by ot = 45 °. All the responses

for the different loadings are very close and can be assumed to be identical. The

difference is less than the variation observed between different samples. The failure strain

in shear is close to the matrix ductility because high hydrostatic stresses do not build up

[Jansson, 1991].

MODEL OF COMPOSITE MATERIAL

The fibers are randomly distributed in the transverse plane of the composite. In the

analysis the fibers are assumed to be long parallel cylinders arranged in a hexagonal

array, Fig 4a, with the fibers orientated in the 3-direction. A perfect bond is assumed

between fiber and matrix. The hexagonal array is the periodical array with mechanical

properties that have the closest symmetries to a transversely isotropic composite. They

have identical transformation properties when the constituents are linear elastic. The

hexagonal array has a deviation from transverse isotropy when the constituents have

nonlinear responses, [Jansson, 1992]. The deviation is strongest for inplane shear. For the

present volume fraction the shear loading r 13 cannot be expected to resemble the

behavior of a composite with randomly distributed fibers because it activates slip on

planes that are unconstrained by the fibers.

The theory of homogenization, cf. [Keller, 1976] and [Jansson, 1902], states that the

macroscopic response of a periodical composite is governed by effective properties givcn

by a boundary value problem on the unit cell when the wavelength of the macroscopic

loading is long compared to the wavelength of the microstructure. The displacement field

can then be written to a leading order as

ui(x)=<e ij>xj+uiP(x)+ui° (i)

where <E ij> is the global average strain giving rise to a constant displacement field on
the unit cell, u°i is an arbitrary constant displacement, and u_r is a periodic

displacement field that is equal on opposite sides of the unit ceil. The macroscopic stress
can be calculated from the local stress distribution in the unit cell as:



(2)

The effective stress-strainresponsefor the composite is determined by giving the

average strain as input. The periodical displacement field and the local stress distribution

are solved for and the effective stress is determined by use of eq. (2). All the considered

stress states are symmetric or anti-symmetric with respect to the Yl and Y2 axis, shown

in Fig. 4a. The periodical displacement field has an inversion symmetry at the point

(Yl = h,/3/2, Y2 = b/2). This implies that only an eighth of the indicated unit cell in Fig.

4a need be analyzed. The fibers are assumed to be linear-elastic and the matrix response

is given by an elasto-plastic J2 power law hardening rule. Because of material nonlinearity

and complex geometry the finite element method has been used to solve the problem of

the unit cell. The mesh is shown in Fig. 4b. The numerical procedure and boundary

conditions are fully described in [Jansson, 1992].

It was found by Jansson, [1991] that the calculated responses agree well with the

experimental observations for a matrix with an initial yield stress of 75 Mpa and a

hardening exponent of 5. From Figs. 1-3 it can be deduced that the model exhibits all the

features of the observed mechanical behavior of the composite.

CONSTITUTIVE EQUATIONS FOR COMPOSITE

General Structure

The total strain for the composite is assumed to be decomposed into a linear elastic

and a nonlinear plastic part according to

e

de ij=de ij+de _ (3)

The elastic part is given as

e

£ ij = Cijki 0 kl (4)

where the compliance tensor C_jk_ has the symmetry properties of a transversely isotropic

material, that is given by five independent constants. As mentioned earlier the inplane

and transverse shear moduli are close and can be assumed to be equal and this reduces

the number of constants to four. The plastic strain will be assumed to be given by a flow

potential



dcP.= aF d_.
q _0..

q

(5)

with d_ as a plastic multiplier. The remaining part of the paper will address the form

of the flow potential F and the structure of the hardening rules that is required to

exhibit the observed and computed behavior of the composite.

Formulation of Flow Potential

The yield surface is frequently used as a flow potential in plasticity theories and

provides advantageous features such as stability and variational formulations. The shape

of the initial yield surface for the composite was calculated by Jansson [1991].

Intersections of the yield surface and a plane orientated in the 033 direction and at an

angle q_ with the o 11" direction is shown in Fig. 5 where Crym is the initial yield stress of

the matrix. Experimental results confirmed the general dimensions of the surface but the

data points were not sufficiently close to give the detailed shape. The calculated surface

is convex and can be described closely by a quadratic polynomial in the stress

components for all stress states except close to O'll = -0"22 for which it has a sharp ridge.

A ridge can be modeled by letting the surface be homogeneous in a non-integer exponent

[Hill, 1979]. For a material exhibiting isotropic work hardening, the yield surface expands

with a self-similar shape and surfaces for a constant amount of dissipated plastic work

have self-similar shapes. Numerically calculated surfaces in the o 11--022plane are shown

in Fig. 6 for different amounts of dissipated plastic work (Wp). The surface with zero
dissipated energy is the initial yield surface. The sharp corners of the initial yield surface

disappear after a small amount of plastic dissipation. The subsequent shape is smooth

and the expansion is nonuniform with faster growth in the o n = o22 direction than in

the o H =-022 direction.

The transition regime between the surface with sharp corners to the smooth surface

is short and does not justify the complexity that would be required to include this

transition. Disregarding the corner, the surface can then be approximated by a quadratic

polynomial in the stress components. The polynomial invariants of the stress tensor for

a transversely isotropic material, cf. Green and Adkins [1960], are

] (O 2 2. 2 222) +0"12' O" [oij I
O"11+O22; 033; --4 11-0 , 13+O23;

when the symmetry axis is orientated in the 3-direction and the symmetry crij = a:_ of the
stress tensor has been used. This set of invariants is not unique but irreducible. The

present form is the most convenient for the formulation of constitutive equations because

the different invariants can be directly associated with different loadings. Including terms

up to second order gives the following polynomial in the stress invariants;



Letting

f

F-] o 11+(722

t
2[ ]2 22 22+ 0"33 - (a 11+022)033+ (0 11-022) +40" 12+ 17 13+0"23 (6)

[ KL] KL2T 4Kr2s Kl2s

F-l=0 (7)

for initial yielding; defines K L as the longitudinal yield stress, KT/2 as the yield stress

for transverse biaxial tension; KTs as the yield stress in transverse shear; K_s as the

yield stress in inplane shear; and KLa- to be a constant defining the interaction of

combined longitudinal and transverse loading. Convexity of the surface requires the

negative sign in front of the interaction term together with the condition

, KLK r
(8)

2

The plastic strain components are normal to the flow potential and are given by eq. (5)

where dL is the plastic multiplier whose magnitude is governed by the hardening
function.

The suitability of using the surface F as the flow potential and the structure of hardening

rules will be investigated using the stress-strain responses for different loading paths. The

stress-strain relationships are generated by the numerical model that provide plastic strain

increments and current stresses as output. The loadings paths have been selected such

that ratios of the yield stresses K(i ) , that define the flow potential, can be determined

conveniently in terms of strain increments and current stresses.

For example, the normality rule (5) gives the strain increments resulting from a tensile

load applied in the 1-direction:

ol,]
detl / 2

[ Kr 2K,2,s]

d;_



Eliminating dk and solving for Kxs/K x gives

Ka.s II de Pl+de p

_ 22

K'r 2 de Pu-de p
22

(9)

in terms of the plastic strain increments. Similar expressions have been derived for the

other loading paths used in this study and are given in appendix A.

The general trends for the ratios of the calculated yield stresses are given in Figs. 7 -

10. In the following it is convenient to separate the loadings into an axi-symmetric part

(with respect to the fiber orientation) that is given by the first three terms in the flow

potential (6) and shear part that is given by the last two terms in (6). For axi-symmetric

loading the ratios remain constant after a short initial transition period. The ratio given

by the initial yield surface agrees very well for KLT/K L , Fig. 7, and is somewhat higher

than the calculated steady state value for KL.r/K T , Fig. 8.

The computations indicate that the interaction between inplane (0.13' 0"23) and

transverse shear (o12) is quadratic. This is also supported by the experimental

observations given in Fig. 3. The other computed stress strain curves are given in Jansson

[1992]. A quadratic interaction can be expected because local stress states in the

composite are orthogonal and interaction through the matrix yield condition is quadratic.

Transverse tension is a combination of axi-symmetric biaxial tension (0. u--0.22) and

transverse shear (0. :2) in the present formulation, cf. eq. (6). This type of loading forms

additional requirements on the evolution of the yield stresses. Ratios of the yield stresses

defining the axi-symmetric part of the flow potential are given in Fig. 8 for transverse

loading. The ratios attain a constant value after a short transition period and this is the

same trend as for the axi-symmetric loading. Curiously the 0.22 loading has a long

transition period. A representative example of ratios of yield stress for axi-symmetric

loading to yield stress for shear loading is given in Fig. 9. It indicates that the yield

stresses for the axi-symmetric part initially increases much faster than the yield stress for

shear loading. The ratios tends to an asymptotic value which is much lower than the one

given by the initial yield surface.

It can be deduced that the normality requires that the ratios of the yield stresses

defining the flow potential for axi-symmetric loading remain constant during the loading

and are closely given by the initial yield surface. The ratio of the yield stresses for shear

loading to yield stresses for axi-symmetric loading decrease gradually during the plastic

deformation to saturation values that are significantly lower than the values given by the

initial yield surface.
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Hardening Rule

A frequently used hardening rule in metal plasticity is isotropic work hardening with

a self-similar expansion of the yield surface. Applying a similar idea here the incremental

plastic work is

dWP=cr ijdE ijP (10)

The normality rule (5) gives relations of the incremental plastic strain components

dE _j in terms of the stresses o'ij" and the plastic multiplier d_. Inverting the relations to
get expressions for the stresses in terms of the plastic strain components and substituting

them into (10) gives the following expression for the incremental plastic work

2
dWP= (d_p + p 2+ 2 p_2 KLK';,, P,, de 22) KL (de _ P,+de P2)de +

33/ + 2KLa,x tae 3

_S[(deP,-deP2)2+4(dEPlz)2]+KlZs[(de _3)2+ (de P3):I] 12 d_

(11)

The requirement for positive dissipation is the same as the convexity condition (8),

which is fulfilled by the initial yield surface. For isotropic hardening and proportional

loading the plastic work may also be expressed as a function of a scalar equivalent plastic

strain that can be identified from (11) as

2
2 "-'4 -(d£p +rtcPh2+I(2¢A':P'_2"KL2K'2(dEP + P11 '_22; ""LX_'331" _-'_-_.2 11 de22) dep +

KLT
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2 2

p2S[(d_PlI-dEP22)2+4(dEP12)2]+ (d£13) (d_ 23) t
(12)

For a material exhibiting isotropic work hardening values of the function F with

constants _ given by the initial yield surface and stresses a_j from different loadings

will fall on one master curve when plotted as a function of the dissipated plastic work or

the equivalent plastic strain. In Fig. 10 the value of F has been plotted versus the

equivalent plastic strain for different loadings. It can be deduced that the results fall into

three different groups of curves. One group consist of axi-symmetric loadings with respect

to the fiber that also has the strongest hardening. The second group is given by the

transverse and inplane shear loadings that has a weak hardening. The third group is given

by the transverse tension that is a combination of axi-symmetric and shear loading and

has an intermediate hardening. The results also indicate that pure hydrostatic loading

causes the same magnitude of plastic strain as longitudinal tension. This implies that

incompressibility should not be used as a constraint on the constitutive equations when

the nonlinearity of the longitudinal response is included. This also leaves the freedom to

fit the experimental observation better.

These observations suggest that the hardening function should be separated into two parts
as

dK T dK L dKLT p
- - "= HAdE ae

/¢ /g /G
(13a)

(13b)

where the superscript o stands for the initial yield surface and the effective strains in the

hardening functions are defined respectively as

2 2

(dee)z=[ Kr] (dePl+deP22)2+(deP)2+ 1[ Kr] (deP+ p
Ae [_L] 33 -2[G] 11 de 22)d£ 3P3

(14a)
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p z p 2 1 11-de 22) (de 13 (de 23)
(de s_) = (de 12) +'_ (de p p 2+ p )2+ p z

(14b)

The first equation (13a) gives the hardening for axi-symmetric loading and referring to

Fig. 10 is assumed to be linear in the effective strain. It is dominated by the constraint

induced by the stiff fiber and the results in Fig. 11 indicate that H A is large. The second

equation (13b) gives the hardening for shear loading and is highly nonlinear because the

fibers constraints the shear loadings moderately. As stated earlier the inplane and

transverse shear curves are close and can be assumed to be equal giving Kws = Kis = K s.

It is obvious from the previous results that the flow rule, eq.(5), and the flow

potential (6) together with the hardening rules, eq. (13), give excellent results for pure

axi-symmetric or shear loading. It remains, to evaluate how well they describe the

behavior under combinations of shear and axi-symmetric loadings. The value of the flow

potential F has been plotted in Fig. lla for different transverse loadings by using the

hardening functions (13). The hardening functions have been determined from the axi-

symmetric and shear responses given in Fig. 10. An exact fit requires the flow potential

F to attain a constant value of unity throughout the deformation. It can be deduced from

Fig. lla that the hardening is not sufficiently strong to keep the value of F constant and

equal to one, especially for stress states close to transverse biaxial tension.

This discrepancy can be overcome by introducing cross hardening terms in the

hardening functions (13) with

dKr-dKL-dKLT=HAdeP +H tie p
Ae AS"* Se (15a)

Ae (lSb)

where the cross hardenings have been assumed to be linear in the effective strains for

simplicity. A cross hardening of HSA = 0.2H A in the shear hardening causes the value

of F to remain constant, Fig. 1 lb. This effect can also be established by a cross-hardening

of HAS =30 H A in the axi-symmetric hardening, Fig. llc.

The most preferable of the two cross hardenings is the one that gives the closest

trend to that required by the normality shown in Fig. 9. The history of Ks/K r with no

cross hardening is given in Fig. 12a. A cross-term in the shear hardening causes the ratio

10



to decreasemore slowly,as indicated in Fig. 12b, while a cross-term in the axi-symmetric

hardening causes the ratio to decrease faster, Fig 12c. A comparison of the results in

Figs. 12a-c with Fig. 9 indicate that the axi-symmetric hardening has the most appreciable

affect when a single cross hardening term is used.

DETERMINATION OF CONSTANTS

A longitudinal tensile test provides the initial yield stress KL ° and the interaction

constant KLX° is given through the transverse contraction as shown by the relation

o K_ t 2AeP

33

KLT _

de Pll

(16)

derived from the normality condition. The constant I-| A in the axi-symmetric hardening

function can thereafter be determined from the longitudinal tests as

do 33

HA- (17)

The inplane shear tests provides the initial yield stress Ks° and the nonlinear shear

hardening slope Hs(e sf).

The initial yield stress for transverse biaxial tension can now be determined from the

transverse tensile test by use of the initial yield stress in shear as

K °- 2Ks°° ° (18)

¢4(K.s°)2-(o_)z

where ox ° is the initial yield stress in transverse tension. The values of the initial yield

stresses are restricted by the requirement of positive dissipation (8) and the initial yield

stress for transverse biaxial tension is also higher than the initial yield stress in shear.

The cross-hardening term HSA can be estimated from the transverse stress strain curve

by satisfying the yield condition close to saturation. This calculation gives the relationship

11



where

.SA:I 1EPe

1

(19)

(20)

The other cross-hardening term HAs has a strong effect on the contraction in the

unloaded transverse direction and can be included when it is appreciable.

The constitutive equations include many constants and a direct systematic

determination of the constants cannot be expected to give the best possible description

of the mechanical behavior. The response have to be evaluated and compared with the

experimental data for the different loadings. It is likely that the description can be

improved by adjusting some of the constants. Experience has shown that the best fit is

usually obtained by using interactive computer graphics to display the results and a

human link in the loop to make the final adjustments.

CONCLUSIONS

It was found that a quadratic flow potential based on the polynomial stress invariants

can be used to describe the mechanical behavior of fiber reinforced composite subjected

to proportional loading. This formulation requires that the hardening function is

separated into two parts: a strong linear hardening for axi-symmetric loading, that is

dominated by the stiff fiber, and a weak nonlinear hardening, that is dominated by the

matrix, for the inplane and transverse shear loadings. Calculations and experiments

indicate that the composite can be assumed to have identical responses for the two shear

loadings.

Cross-terms in the hardening functions improves the accuracy for transverse tension

by increasing the hardening and rate of constraint in the fiber. The cross-hardening can

be neglected if an error of 20 % in stress can be accepted in transverse tensile or shear

response.

The plastic strain components for longitudinal tension and hydrostatic loading are of

the same order. Hence, a consistent simplification of the constitutive equations is to

assume inextensibility in the longitudinal direction when the plastic deformation is

assumed to be incompressible. This assumption makes the constitutive equations

12



particularly easyandsuitable for handcalculations.It implies that the compositecanonly
deform in inplane and transverseshear.

In a subsequentpaper theseconstitutiveequationswill be implemented into ageneral
finite element program and the performance of the equations will be evaluated for
representative structural components.
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APPENDIX A

Longitudinal tension

a 33" 0

(A.1)

(A.2)

gives

gET I deP

_ 33 (A.3)

Transverse biaxial tension and longitudinal plane strain

011=022 _ de 3P3=0

(A.4)

gives

KLT I O 11
KL (7 33

(A.5)
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Transversebiaxial tension

O 11 =17 22

o 11+o z2dXde _x=dc _z= 2-- (A.6)

(A.7)

gives

(A.8)

Longitudinal tension and transverse plane strain

o 33, de _l;de 22p= 0 (40)

d_ Pl=dE P =12° ll +° 22_ ° 33 ]d_ =O (A.9)

gives

KLT .._I 033
g T 4Oll

(A.10)
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Transversetension

O"11 _' 0

p[_o,,+o111_.
de: 11=//------ --|uA.

l,g_]
(A.11)

(A.12)

de p =- Olld_

/G
(A.13)

gives

KTS_ II de Pl+de p

22

K_ ? d_,-eeP
22

(A.14)

!

KLT_ 1[- dep +" p1..2_1a2 22 (A.15)
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Transverseloading close to biaxial tension

p de Pl
d_ 22---_

4

gives

K-rs_ I 3 °"11-°"22
KT 20 o"11+o"22

(A.16)

(A.17)

18



o
o_

b

6OO

500

200

IO0

0.30

Experiment
Computed

0,1 0.2 0.3 0,4

(%)

cO

-0.02

-O.O4

-0.06

-0.08

-0.10

Experiment
Computed
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symmetric loading.
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Fig. 8 Ratio of yield stresses for axi-symmetric part of flow-potential for axi-

symmetric and combinations of axi-symmetric and shear loadings.
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Fig. 9 Ratio of yield stresses for shear and axi-symmetric part of flow-potential

for transverse loading.
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Fig. 11 Influence of cross hardening terms on the value of the flow-potential for

transverse loading.
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